English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42120072      線上人數 : 1283
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/1349


    題名: 演算法LLL與白化濾波應用於導航衛星相位模稜搜尋;Searching the Ambiguity of Navigation Satellite Carrier-phase Using the LLL Algorithm and the Whitening Filter
    作者: 陳揚仁;Yang-Zen Chen
    貢獻者: 土木工程研究所
    關鍵詞: 相位模稜;高相關;higher correlation;Carrier-phase
    日期: 2009-06-18
    上傳時間: 2009-09-18 17:27:59 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 一般而言,GNSS載波相位定位之精度較電碼定位高,利用載波相位觀測量進行衛星測量求解位置時,如何快速得到正確的整數相位模稜值,是求解精度與效率的關鍵。但是參數間彼此高相關,會使這個目標變得困難。這個問題能夠藉由衛星幾何的改變來改善,但是卻因此而加長觀測時間。因此LLL技術以及白化濾波即將原在高相關空間的參數,投影至另一低相關空間。使數學變換過程等效於衛星幾何改變,進而可在較短觀測時段裡求解。 LLL是將一正定對稱矩陣分解為上下三角矩陣,再利用Gram–Schmidt正交變換將三角矩陣之向量轉變為彼此間皆正交,接著藉由正交化後之上下三角矩陣相乘得到一具備對角優勢之協方差矩陣。 白化濾波是利用Crout 因子分解,使一正定對稱矩陣分解為對角線矩陣與單位上下三角矩陣之連乘。應用其矩陣對角線化的特性於相位模稜實數解的協方差矩陣上,產生具備對角優勢之協方差矩陣。 應用此協方差矩陣可大幅減少整數相位模稜的候選解。最後將候選解逐一代入觀測式中重新進行平差演算,求取一殘差二次形為最小之解。 Generally, the GNSS carrier-phase is more accurate then the pseudorange. While using carrier-phase for positioning, the key point is how to obtain the correct integer ambiguity quickly and efficiently. However the high correlation between parameters makes it to be difficult. The problem can be improved by the changing of the geometric of satellites. But it needs longer observation time to reach. Therefore the LLL algorithm and the whitening filter are techniques mapping the parameters from a higher correlation space to a lower correlation space. And the effects of mathematics changing and the geometric changing can be the same. Then the result can be gotten within a short observation period. The LLL algorithm decomposes a positive-definite symmetrical matrix into the upper/lower triangular matrix. Then uses the Gram–Schmidt orthogonalization to transform vectors of the matrix into orthogonal each other. Then the diagonal covariance matrix can be gotten by the transpose of the orthogonal matrix multiplying to the orthogonal matrix. Whitening filter uses crout factorization to decompose a positive-definite symmetrical matrix into the continue multiplication of diagonal matrix and unit upper/lower triangular matrix. Applying the specifics of its diagonal matrix condition to covariance matrix can get the diagonal covariance matrix. Using the diagonal covariance matrix can reduce the number of candidates for integral ambiguity. Final, the candidates are inserted into the observation equations to determine the solution again. It is believed that the integer candidate which produces the smallest sum of squares of the residual is the most likely solution we want.
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明