衛星影像幾何處理可分為嚴密幾何模式和有理函數模式。嚴密幾何模式又可細分為光束法及直接地理對位,其中的直接地理對位是以星曆資料為基礎,需較佳的起始值,所以對地面控制點的需求較少。而有理函數模式是使用兩個多項式的比值來建立物空間與像空間的轉換關係,標準化的數學形式較嚴密幾何模式簡易。實際的應用上,有些衛星公司僅提供有理函數轉換係數,有些衛星公司僅提供星曆資料。當兩類的衛星影像要進行整體平差時,則需考量異質模式間之整體平差,因此嚴密幾何模式與有理函數模式有其整合之必要性。 本研究結合直接地理對位及有理函數模式進行整體平差。研究重點為兩種異質數學模式間之整合處理。主要工作項目包括直接地理對位及有理函數模式之建立,配合數值地形模型進行高程控制,並以最小二乘配置法補償局部系統誤差。實驗內容將分別測試本文提出之異質整合模式與其它同質性整體平差之方法之比較、分析連結點數的增加對於成果之影響,與針對不同空間解析度之影像進行整合處理與分析。精度評估分為兩大部份,分別為地面定位坐標誤差和影像間之相對偏移量。實驗成果顯示,最小二乘配置可有效改善影像間幾何一致性,且獨立平差配合最小二乘配置成果與聯合平差配合最小二乘配置成果相近。 The geometric modeling may be divided into two categories, namely, rigorous sensor model (RSM) and rational function model (RFM). The former one contains Bundle Adjustment and Direct Georeferencing. Actually, some satellite companies provide the Rational Polynomial Coefficients (RPC) instead of the ephemeris data. Some others are on the contrary. The block adjustment of the heterogeneous models between RSM and RFM should be integrated when the two types of images are employed. This paper combines Direct Georeferencing and RFM for multi-sensor block adjustment. Two heterogeneous models using Digital Elevation Model (DEM) as elevation control are integrated. The major works of the proposed schemes include (1) building up Direct Georeferencing mathematics, (2) setting up RFM, and (3) compensating the local systematic errors by least squares collocation. The experiments test the different geometric models, different numbers of tie points, and the integration of multi-resolution images. The validation includes two parts: absolute accuracy and relative discrepancy. Experimental results indicate that least squares collocation can improve the relative discrepancy. It is also demonstrated that the result of single adjustment with least squares collocation is similar to block adjustment with least squares collocation.