系統乃由兩個或兩個以上具有確定功能的組件或次系統組成,系統內的各個基本組成因相互作用、相互關聯形成一完整功能之組織。在系統工程中,常藉由”功能”、”技術”、”組織”來描述一個系統;因應系統不同的客觀功能需求,使用者利用各種技術(手段)配合其所需組織(硬體設備)來達成其功能需求。 系統的行為可用”可靠度”、”表現值”表示;可靠度即為系統滿足其需求的機率;表現值則代表其系統能力,如企業產品於市場的佔有表現。本文主要探討以競爭策略為手段,觀察其對系統行為的影響。 常見的系統以”並聯”、”串聯”、”緊急備用”或”k-out-of-n”等表示其與各子系統的關係。本文前半段探討分負荷(k-ouf-of-n)系統之可靠度行為;運用系統競爭策略進行負荷調整,以期在不需經過複雜的最佳化計算下,能得到系統最佳的壽命。首先根據已發展” k-out-of-n”系統可靠度理論建立分負荷系統之可靠度模式,以負荷相關失效率為基礎,運用”分系統可靠度相同”、”分系統殘餘壽命相同”、”分系統潛在壽命相同”、三種競爭策略進行負荷調整,以”平均負荷”策略為基準,分析系統可靠度在不同競爭策略下之變化情形。此外亦探討系統在使用過程中,因應外在需求而增加其他分系統時各種策略對整體行為之影響。 本文後半段探討多系統在競爭條件下之成長模型,因此首先以主客觀架構建立系統成長之數學模式,在不同參數及條件下分析其成長或衰退之行為。 In this thesis, system behavior based on competition strategies is investigated. In first part it concentrates on maximizing the useful life of a shared-load system. In the second half it deals with the system growth behavior by consideration of different types of motivations which leads to the system growth or decay. The traditional shared-load k-out-of-n system performs satisfactorily at least k of the total n units are normal with the load shared among the surviving units. For maximizing system life the reliability model is developed based on CNR0 model. This model describes the reliability-dependent degradation of the subsystem. In the numerical examples, the surviving units compete with each other by (1)equaling their residual life, (2)equaling their potential life and (3) equaling their reliability. The situations when the demands suddenly increase are also considered. The system growth model is established with “Intrinsic-extrinsic reasoning analysis” under competition strategies. The behavior grows or decays by changing the parameters or/and the threshold.