本論文主要以研究高壓540Vf陽極鋁箔為主,分別改變電蝕液成份、溫度、電流密度等條件,探討鋁箔經電化學蝕刻後,其腐蝕組織與形貌對於表面積增加率的影響。 本實驗首先利用恆電位儀觀察在不同電蝕參數下,電位-時間與電位-腐蝕電流關係圖。藉由電位、電流、時間的變化推測腐蝕反應進行時的情形。接下來依照不同探討主題來控制不同的電蝕參數,實際電蝕高壓540Vf陽極鋁箔,再按照EIAJ的規範對電蝕鋁箔做化成處理,並分別量測其靜電容量、重量損失率、引張折曲強度。最後利用光學顯微鏡(OM)與電子顯微鏡(SEM)將腐蝕試片作截面、表面、皮膜複製觀察以了解腐蝕孔洞的分佈狀況。 由實驗結果得知,適當的硫酸、鹽酸添加量,有較適合tunnel蝕孔形成的離子濃度與腐蝕電位,也可以得到較佳的腐蝕組織與靜電容量。而磷酸的添加主要是形成鈍化膜改變腐蝕的速度,適當的磷酸添加量也有助於靜電容量的提昇。而改變電流密度方面,提供的電流密度越大雖有較大的腐蝕電流,但實際用於腐蝕的電量卻較少,所以鋁箔重量損失率較小。至於改變溫度的實驗,溫度越高Cl-離子的擴散速率也越快,重量損失率也越大。而要得到較適合的腐蝕組織,也都要控制較適合的電流密度與電蝕液溫度。 This thesis focus on the survey of 540Vf aluminum foil primarily. By changing concentration ,current density and etching temperature. We investigated the effects of etching morphology on the surface increment. This experiment first used potentiostat to observe the relationship between potential-time and potential-corrosive current under different etching parameters. Thus we could predict the reaction during etching process. According to the selected parameters of electrochemical etching, the aluminum foils have been etched, and the capacitance was measured under EIAJ specifications. For surface, oxide replicas and cross section morphology studies, the samples were examined in the SEM, SEM and OM respectively From the experiments, it was found that there was a proper sulfuric and hydrochloric acid concentration for tunnel etching. At this concentration we could get a fine microstucture for increasing capacitance. Phosphoric acid could grow a passive film, which protected aluminum from Cl- corrosion. Although high current density had large corrosive current, the current efficiency was bad too. Increased etching temperature could accelerate the diffusion of Cl-. There also had proper current density and temperature for etching process.