中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/2293
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41642715      Online Users : 1360
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/2293


    Title: 利用最大熵方法決定粉末射出成型生胚 之最適宜局部空孔度分布;The determination of the most appropriate local porosity distribution of green compact in MIM by utilizing the maximum entropy mothod
    Authors: 李培民;Pei-Min Lee
    Contributors: 機械工程研究所
    Keywords: 最大熵方法;空孔度;局部空孔度分布;;金屬粉末射出成型;local porous distribution;entropy;maximum entropy method;metal powder injection molding;porous
    Date: 2003-06-27
    Issue Date: 2009-09-21 11:43:00 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 脫脂製過程在金屬粉末射出成型製程中相當耗時,關係著製造成本,胚體內黏結劑的殘留量足以影響成品品質,因此脫脂過程具有舉足輕重的地位。 影響胚體內黏結劑殘留量的參數相當多,綜合參考文獻得知,脫脂製程中最基本的影響參數為空孔度;一般數值模擬,多半將以上參數假設為均勻分布,如此的假設使得數值模擬有失真實性,因為在實際胚體中粉末分布會因為控制體積之不同而有所差異。 本研究先運用最大熵方法決定局部空孔度的分布函數與特徵長度,再運用統計方法計算其機率分布,最後對分布函數以卡方檢定法結合雙尾統計假設做統計檢定,其說明此分布函數可用beta函數取代,並用以模擬實際的局部空孔度分布。 The removal of binder in the metal powder injection molding (MIM) is the most time consuming step and determines the manufacturing cost. The residual quantity of binder in the compact has great influences on the mechanical properties of the products. So the de-binding process proves to be the key step in MIM. From literature reviews, porous is the most important parameter. In most numerical simulations parameters are assumed as ideal as possible, and the results are thus unrealistic. This study utilizes statistical form to calculate local porous distribution (LPD), then applying the maximum entropy method (MEM) to determine lattice constant and distribution function. Finally, the distribution function is proved to be a beta function by statistical testing.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明