本論文以光電化學方法,在n 型(100)矽單晶上蝕刻獲得寬且深的微米級巨孔陣列及連續壁結構。研究方法利用陽極動態極化法及定電位蝕刻,在氟化物溶液中,探討預蝕刻形貌、蝕刻液濃度、添加劑、蝕刻液種類等參數對n 型(100)矽單晶的陽極極化曲線,以及蝕刻形貌的影響,進而挑選出最佳蝕刻參數,再利用定電流法製作出所需之結構。 研究結果顯示,縮短預蝕刻時間為一半,可獲得平底的預蝕刻結構,藉此加強孔洞側向的蝕刻,得到寬50μm 的蝕刻孔徑。n-型(100)矽單晶在室溫下照光150W,蝕刻孔洞深度隨氫氟酸濃度從1M 增加到6M 而減少,1M 氫氟酸有最大的蝕刻孔洞深度。試片在2M 氫氟酸中添加5M 及10M 酒精濃度,可增加蝕刻孔洞深度,但添加濃高到15.8M時容易形成電解拋光,使蝕刻效果下降。氟化銨中添加酒精的效果與氫氟酸相反,2M 氟化銨中添加越多的酒精,蝕刻效果越差。 以1M 氫氟酸,定電流0.135mA/cm2 蝕刻24 小時,可得到寬50μm,深近100μm,壁厚10μm 的連續壁結構;以2M 氫氟酸,定電流0.135mA/cm2蝕刻24 小時,可得到寬50μm,深近90μm,孔洞間距10μm 的微米巨孔陣列結構。 Formation of macro-pores and wall array on n-type silicon (100) by photo-electrochemical etching has been investigated in this work. Using dc-potentiodynamic polarization and potentiostatic etching to analyze the anode polarization curves and etching morphologies of n-type silicon (100) which were effect by pre-etching morphology, etching electrolyte concentration, additive and etching electrolyte type. Choosing the best etching parameters in the experiments and using galvanostatic etching to fabrication the designate structures. Results show that: decrease the pre-etching time to one half will obtain a flat bottom pre-etching morphologies that increase the side etching of pores and reach the 50µm pore diameters. n-type silicon (100) under room temperature and 150W illumination, the depths of etching pores decrease when HF concentration increase from 1M to 6M. 1M HF has the deepest pores. Add ethanol in 2M HF will increase the etching depths. But add 15.8M ethanol (which does not content any water) will decrease the etching depths. On the contrary, add ethanol in 2M NH4F will decrease the etching depths. Galvanostatic etching with 24 hours can obtain the macro-pores and wall array with 50µm widths, 100µm depths, and 10µm wall thickness.