矽單晶為半導體最主要的基材之一,而大約有85%的矽單晶是經由柴式法(Czochralski method)所製造的,在本研究中將針對柴式法生長矽單晶過程中的爐體設計做分析研究。 對於爐體內的熱流現象經由Heat transfer equation及Incompressible Navier-Stokes equatuion去計算後可以得到爐體內的熱流場及晶棒的熱歷史,再結合R.A.Brown等人所發展的缺陷方程式(Defect equation)計算晶棒內的OISF-ring的位置,再藉此分析晶棒內的缺陷分佈。 對於柴式法生長矽單晶的過程也將逐一針對不同尺寸的爐體內加裝熱遮罩,改變爐體設計對於熱流場及缺陷分佈的影響、氬氣流動現象的影響做深入的研究分析,同時也針對矽單晶的生長尺寸不同對於爐體內熱流場及缺陷分佈的影響加以分析,最後也將探討改變12吋爐體設計對於熱流場及缺陷分佈的影響所產生的變化。 本研究參考文獻及專利中的熱遮罩設計,將其加入爐體內並計算爐體內的熱流場分佈及晶棒內的缺陷分佈,利用熱遮罩的裝設來改變爐體的設計,並且利用熱遮罩的裝設來輔助晶體的生長,將可提升矽單晶的品質、提高矽單晶的拉速及降低氬氣的使用量,降低生產所需的成本。 To clear the characteristics of the Czochralski (Cz) furnace for the single-crystal growth of silicon, a set of global analyses of momentum, heat and mass transfer in small Cz furnaces is carried out using the finite-element method. Consider the global system to be a steady state, axisymmetric system with laminar flow, and ideal gas condition. Convective and conductive heat transfers, radiative heat transfer between diffuse surfaces and the Navier–Stokes equations for gas are all combined and solved together. In this work, heat shield is installed in the Czochralski furnace. Heat shield refers from the reference papers and U.S. patent. Heat shield will effect the thermal and microdefect distributions. In this work will analysis the heat shield effects by numerical simulation.