English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65317/65317 (100%)
Visitors : 21373912      Online Users : 247
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/2565


    Title: 矽相關半導體材料光學模式之實驗量測儀器發展;Development of Experimental Validation on Optical Property Models for Silicon-Related Materials and Structures
    Authors: 張凱嘉;Kai-Chia Chang
    Contributors: 機械工程研究所
    Keywords: 半導體;放射率;光學性質;快速熱製程;optical properties;RTP;emissivity;semiconductor
    Date: 2005-07-10
    Issue Date: 2009-09-21 11:50:34 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本篇論文是運用傅立葉轉換紅外線光譜儀 (FT-IR spectrometer) 搭配高溫穿透及反射腔體成為可量測材料在溫升狀態下光學性質之設備。經由介紹快速熱製程後我們了解材料光學性質在溫度量測上所扮演的重要角色,此外也完整地整理文獻並說明發展此套設備之背景。在設備驗證方面,整個實驗是經由量測矽晶圓於升溫時所表現的穿透率和反射率,以熱輻射和電磁波理論所提供關係估計出矽晶圓的光學性質。 從實驗結果得知在量測溫升穿透率部分,於短波範圍時因為光子的能量強度大於矽的能隙,所以無論矽晶圓溫度為何光子都會於晶圓內部被吸收而呈現不穿透的現象。而大於吸收邊界的中波段則是會強烈地受到溫度影響,其隨著溫度的上升穿透率會非常明顯地降低。接下來的長波段則是受到晶格震盪吸收的影響在較低溫時有著比前者稍低的穿透率且有明顯的吸收峰產生,等到溫度繼續上升時其穿透率也有下降的趨勢,並且因為晶格震盪與自由載子的雙重作用影響而造成穿透率下降的速度將會比前者快速。 此外,在反射率量測部分則可以發現其隨著溫度遞增而減小,不過在高溫時將會呈現一定值狀態。在這裡我們將以溫度與自由載子的濃度影響作為出發解釋其發生的原因。再來短波的部分則呈現與其它波段相反的情況。 我們最後將上述兩種光學性質整理我們可以得到放射率,而從結果中我們也可以觀察到放射率會隨著溫度上升而遞增。此外我們也計算出波長於0.95μm 時隨溫度不同所呈現的放射率。 This study uses Fourier Transform Infrared spectrometer (FT-IR spectrometer) with high temperature transmittance and reflectance cell to be a system, which can be used for measuring the optical properties of materials at elevated temperature. After introducing the Rapid Thermal Processing (RTP), we know that optical properties of materials play an important role in the temperature measuring. We use our equipment to measure transmissivity and reflectivity of lightly doped silicon wafer and use the optical relation having empirical ones to verify the equipment applicability. From the experimental results, we can observe the phenomenon. There is no transmissivity in the short wavelength. It is caused by the photon energy is greater than silicon bandgap energy and silicon wafer is opaque. When the wavelength is greater than absorption edge, the transmissivity becomes lower obviously with increasing temperature. For longer wavelength, it will be affected by lattice vibration absorption and has obvious peaks at low temperatures. With temperature increasing, it has a trend of lowering transmissivity by effects of lattice vibration and free carrier absorption mechanisms. The reflectivity decay with increasing temperature, but will be a constant in high temperature. Here, we will interpret the phenomenon by temperature and free carrier concentration. In the short wavelength it will be a different circumstance. Finally, we arrange above transmissivity and reflectivity and have emissivity. We will observe the emissivity increase at elevated temperature. Besides, we calculate the emissivity in wavelength 0.95μm at different temperatures.
    Appears in Collections:[機械工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown551View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明