本文是利用平衡偵測雙頻率外差干涉極化儀,量測一般物質的磁致旋光效應(magnetochiral effect)以及醣類的變旋(mutarotation)現象,利用這個光學架構,可以成為研究基礎物理及化學的平台。在本文中,利用平衡偵測雙頻率外差干涉極化儀,測量固態及氣態物質的磁致旋光角度及Verdet常數,所量測的物質分別為Bi12SiO20 (BSO)晶體及空氣。我們量測出BSO晶體的磁致旋光角度1.8×10-5(rad) 以及,Verdet常數5.27×10-5(rad/mT mm) ;在量測空氣磁致旋光效應的實驗中,平衡偵測雙頻率外差干涉極化儀僅以單光程的架構,即可量測出空氣的磁致旋光角度5.2×10-6(rad) 及Verdet常數1.3×10-6(rad/mT m)。在量測空氣磁致旋光效應實驗中,利用平衡偵測雙頻率外差干涉極化儀,在量測磁致旋光角度的解析度,最高可以達到1.74×10-7(rad) 。如果平衡偵測雙頻率外差干涉極化儀在搭配上穿透係數為0.1、精細度為150的Fabry-Perot共振腔,量測微小旋光角度,經計算後,此光學系統在量測磁致旋光角度的解析度可高達 1.9×10-10(rad)。 在量測醣類變旋現象時,在光學架構上,我們提出了等振幅平衡偵測雙頻率外差干涉極化儀,它可以消除因為Zeeman氦氖雷射兩個正交的偏振光P和S波振幅不相等所帶來的誤差。在量測葡萄糖變旋現象的實驗中,光學架構在量測旋光角度靈敏度可以達到 8.3×10-5 (deg/cm)。針對變旋現象的動力學而言,我們求出了葡萄糖變旋現象的動力學係數:總變旋常數為 k=7.67×10-5 sec-1 、順向變旋常數 k1=2.76×10-5 sec-1和反向變旋常數k2=4.91×10-5 sec-1。除此以外,我們也量測到D-葡萄糖在632.8nm的量測光、溶於pH值為7的三次水時,α- 和β- D-葡萄糖的比旋光度(rotatory power)分別為105(deg(g/L)-1 dm-1) 及12(deg(g/L)-1 dm-1) 。 綜上所述,由於平衡偵測雙頻率外差干涉極化儀及等振幅平衡偵測雙頻率外差干涉極化儀,有著光學結構簡單、高靈敏度、高偵測效率、高訊雜比、低共同相位雜訊(common phase noise)和即時量測等特性。顯示了平衡偵測雙頻率外差干涉極化儀在基礎物理和生物化學上應用的潛力。 In this article, balanced detection two-frequency heterodyne paired polarized polarimeter(BDTHP) is used to measure magnetochiral effect of Bi12SiO20 (BSO) crystal and ambient air. The Faraday rotation angle and Verdet constant of BSO crystal are 1.8×10-5(rad) and 5.27×10-5(rad/mT mm) respectively; the Faraday rotation angle and Verdet constant of ambient air are demonstrated as 5.2×10-6(rad) and 1.3×10-6(rad/mT m) respectively. In the experiment, measuring the magnetochiral effect of ambient air, the sensitivity of BDTHP is up to 1.74×10-7(rad) . If we applied a Fabry-Perot cavity with finesse F=150 and transmission coefficient K=0.1 in the balanced detection two-frequency heterodyne paired polarized polarimeter, the sensitivity of Faraday rotation angle detection will be up to 1.9×10-10(rad) . Moreover, the equal-amplitude balanced detection two-frequency heterodyne paired polarized polarimeter(EBDTHP) is proposed for measuring the mutarotation of D-glucose. The EBDTHP has the ability to degrade the error from the non-equal amplitudes of P and S waves of Zeeman He-Ne Laser. The total, forward and reversed mutarotation rate constant are k=7.67×10-5 sec-1, k1=2.76×10-5 sec-1, and k2=4.91×10-5 sec-1 respectively. The sensitivity of optical the rotation angle measurement in EBTHP was achieved with the value of 8.3×10-5 (deg/cm). The specific rotation angles of α-D-glucose 105(deg(g/L)-1 dm-1) and β-D-glucose 12(deg(g/L)-1 dm-1) are also measured by EBTHP. In summary, BTHP and EBTHP not only are capable of measuring the small optical rotation angle but also have the potential to be a research platform for biology and chemistry applications.