本論文中,我們討論的是有關於Calderón-Zygmund算子在哈弟空間 的有界性。我們利用 的小波刻劃來證明當Calderón-Zygmund算子T滿足T*1=0,則T在H^p上有界,其中p滿足n/(n+ε)<p<=1,ε依賴於T的核的光滑性。 This article deals with the boundedness properties of Calderón-Zygmund operators on Hardy spaces, H^p. We use wavelet characterization of H^p to show that a Calderón-Zygmund operator T with T*1=0 is bounded on H^p, n/(n+ε)<p<=1, where ε is the regular exponent of kernel of T.