Emergency roadway repair and relief distribution planning following a natural disaster has traditionally been done manually and separately, based on the decision-makers experience, disregarding the interrelationship between emergency roadway repair and relief distribution from the system perspective, which may yield inferior solutions. Hence, in this research we consider minimizing the length of time required for both emergency roadway repair and relief distribution, as well as the related operating constraints, to develop a model, for planning emergency repair and relief distribution routes and schedules within a limited time. We construct a time-space network for emergency repair and another for relief distribution. A number of operational constraints are set between these two networks according to real constraints. Our model is a multi-objective, mixed-integer, multiple-commodity network flow problem. We adopt the weighting method and develop a heuristic to efficiently solve this problem in practice. To evaluate our model and the solution algorithm, we perform a case study. The results show the model and the solution algorithm could be useful in practice. (C) 2008 Elsevier Ltd. All rights reserved,