中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26351
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142291      Online Users : 1001
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26351


    Title: INCREASED STABILITY OF ANAEROBIC-DIGESTION BY CONTROLLED RECIRCULATION
    Authors: OUYANG,CF;CHANG,TG
    Contributors: 土木工程研究所
    Keywords: PHASE
    Date: 1991
    Issue Date: 2010-06-29 17:11:25 (UTC+8)
    Publisher: 中央大學
    Abstract: The treatment characteristics of municipal sludge were investigated by the anerobic activated sludge digestion (AASD) system. This study used the suspended growth system and mesophilic temperature in the digestors and separators; the system achieves a more stable and improved process; such a process configuration offers the possibility of a substantial reduction in the total volume necessary for efficient stabilization. This study presents data indicating that the AASS system is feasible. In general, with an applied solids concentration of TS= 2%, the nonbiodegradable portion of the substrate concentration contained in the primary and secondary sludge was found to be 40.6% and 35.1% on the basis of TVS and COD, respectively. This study also provides evidence that the reactions at a recycling ratio of R=1 and R=3 are considerably more stable than those achieved in conventional or other recycling ratio digestors with a HRT of 9 days or longer. The gas production and bioactivity is also higher than that normally produced by the conventional single-stage digestion system. The experimental results also indicate that the dilution rate exceeds the maximum specific growth rate as the HRT is decreased from 9 days to 6 days. The significant saving in reactor volume and enhanced methane generation should offset the energy required for digested sludge recycling.
    Relation: WATER SCIENCE AND TECHNOLOGY
    Appears in Collections:[Graduate Institute of Civil Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML665View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明