中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26434
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41670994      線上人數 : 1350
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/26434


    題名: Study of LiFePO4 cathode materials coated with high surface area carbon
    作者: Lu,CZ;Fey,GTK;Kao,HM
    貢獻者: 化學工程與材料工程學系
    關鍵詞: LI-ION BATTERIES;LITHIUM;LIFEO2;IRON;OPTIMIZATION;PERFORMANCE;CAPACITY
    日期: 2009
    上傳時間: 2010-06-29 17:27:58 (UTC+8)
    出版者: 中央大學
    摘要: LiFePO4 is a potential cathode material for 4V lithium-ion batteries. Carbon-coated lithium iron phosphates were prepared using a high surface area carbon to react precursors through a solid-state process, during which LiFePO4 particles were embedded in amorphous carbon. The carbonaceous materials were synthesized by the pyrolysis of peanut shells under argon, where they were carbonized in a two-step process that occurred between 573 and 873 K. The shells were also treated with a proprietary porogenic agent with the goal of altering the pore structure and surface area of the pyrolysis products. The electrochemical properties of the as-prepared LiFePO4/C Composite cathode materials were systematically characterized by X-ray diffraction, scanning electron microscope, element mapping, energy dispersive spectroscopy, Raman spectroscopy, and total organic carbon (TOC) analysis. In LiFePO4/C composites, the carbon not only increases rate capability, but also stabilizes capacity. In fact, the capacity of the composites increased with the specific surface area of carbon. The best result was observed with a composite made of 8.0 wt.% with a specific surface area of 2099 m(2) g(-1). When high surface area carbon was used as a carbon source to produce LiFePO4, overall conductivity increased from 10(-8) to 10(-4) S cm(-1), because the inhibition of particle growth during the final sintering process led to greater specific capacity, improved cycling properties and better rate capability compared to a pure olivine LiFePO4 material. (C) 2008 Elsevier B.V. All rights reserved.
    關聯: JOURNAL OF POWER SOURCES
    顯示於類別:[化學工程與材料工程研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML478檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明