English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23194510      Online Users : 335
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26465


    Title: Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study
    Authors: Sung,HW;Huang,DM;Chang,WH;Huang,RN;Hsu,JC
    Contributors: 化學工程與材料工程學系
    Keywords: BIOLOGICAL GLUE;CROSS-LINKING;POLY(L-GLUTAMIC ACID);TISSUE;LUNG;RATS
    Date: 1999
    Issue Date: 2010-06-29 17:28:42 (UTC+8)
    Publisher: 中央大學
    Abstract: Bioadhesives are used for tissue adhesion and hemostasis in surgery. A gelatin-resorcinol mixture crosslinked with formaldehyde (GRF glue) and/or glutaraldehyde (GRG) is used for this purpose. Although the bonding strength of the GRF glue to tissue is satisfactory, concerns about the cytotoxicity of formaldehyde are reported in the literature. It was suggested that the cytotoxicity problem of the GRF glue may be overcome by changing its crosslinking method. The study was therefore undertaken to assess the feasibility of using an epoxy compound (GRE glue), a water-soluble carbodiimide (GAC glue), or genipin (GG glue) to crosslink with a gelatin hydrogel as new bioadhesives. GRF glue and GRG glue were used as controls. The results of our cytotoxicity study suggested that the cellular compatibility of the GAC and GG glues was superior to the GRF, GRG, and GRE glues. The gelation time for the GG glue was relatively longer than the GRF and GRG glues, while no gelation time could be determined for the GAC glue. Additionally, it took approximately 17 h for the GRE glue to become adhesive. The GRF and GRG glues had the greatest bonding strengths to tissue among all test adhesives, while the bonding strengths of the GAC and GG glues were comparable. In contrast, there was almost no bonding strength to tissue for the GRE glue, However, the GRF and GRG glues were less flexible than the GAC and GG glues. Subsequent to the bonding strength measurement, each test adhesive was found to adhere firmly to the tissue surface and underwent cohesive failure during the bond breaking. In conclusion, the GRF and GRG glues may be used as tissue adhesives when their ability to bind tissue rapidly and tightly is required; the GAC and GG glues are preferable when the adhesive action must be accompanied with minimal cytotoxicity and stiffness; and the GRE glue is not suitable for bioadhesion in clinical applications. (C) 1999 John Wiley & Sons, Inc.
    Relation: JOURNAL OF BIOMEDICAL MATERIALS RESEARCH
    Appears in Collections:[化學工程與材料工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML578View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明