中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26497
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41652709      Online Users : 1690
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26497


    Title: Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent
    Authors: Huang,LLH;Sung,HW;Tsai,CC;Huang,DM
    Contributors: 化學工程與材料工程學系
    Keywords: CROSS-LINKING;BLUE PIGMENTS;COLLAGEN;BIOMATERIALS;TEMPERATURE;METHYLAMINE;MECHANISMS;GENIPIN
    Date: 1998
    Issue Date: 2010-06-29 17:29:26 (UTC+8)
    Publisher: 中央大學
    Abstract: A recognized disadvantage of the currently available chemical reagents used to fix bioprostheses is the potential toxic effects a recipient may be exposed to from residues. It is therefore desirable to provide a crosslinking reagent that is of low cytotoxicty and can form stable and biocompatible crosslinked products. To achieve this goal, a naturally occurring crosslinking reagent-genipin-was used by our group to fix biological tissues. Genipin can be obtained from its parent compound geniposide, which can be isolated from the fruits of Gardenia jasminoides ELLIS. In our previous feasibility study, it was found that the cytotoxicity of genipin is significantly lower than both glutaraldehyde and an epoxy compound. Additionally it was shown that genipin can form stable crosslinked products. The present study further investigates the biocompatibility of a genipin-fixed porcine pericardium implanted subcutaneously in a growing rat model. The fresh, glutaraldehyde-, and epoxy-fixed counterparts were used as controls. It was noted that the inflammatory reaction of the genipin-fixed tissue was significantly less than its glutaraldehyde- and epoxy-fixed counterparts. Also, the genipin-fixed tissue has tensile strength and resistance against in vivo degradation comparable to the glutaraldehyde-fixed tissue. Additionally, the calcium content of the genipin-fixed tissue measured throughout the entire course of the study was minimal. Nevertheless, further study in calcification for the genipin-fixed tissue should be conducted in a blood-contact environment. The results obtained in this subcutaneous study indicate that genipin is a promising crosslinking reagent for biological tissue fixation. However, further durability testing in vitro and in vivo are needed to determine the relative functional merits of this new crosslinker. (C) 1998 John Wiley & Sons, Inc.
    Relation: JOURNAL OF BIOMEDICAL MATERIALS RESEARCH
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML480View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明