English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23052163      Online Users : 250
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26922

    Title: Heat transfer enhancement by fins in the microscale regime
    Authors: Chou,FC;Lukes,JR;Tien,CL
    Contributors: 機械工程研究所
    Date: 1999
    Issue Date: 2010-06-29 18:03:20 (UTC+8)
    Publisher: 中央大學
    Abstract: The current literature contains many studies of microchannel and micro-pin-fin heat exchangers, but none of them consider the size effect on the thermal conductivity of channel and fin walls. The present study analyzes the effect of size (i.e., the microscale effect) on the microfin performance, particularly in the cryogenic regime where the microscale effect is often appreciable. The size effect reduces the thermal conductivity of microchannel and microfin walls and thus reduces the heat transfer rate. For this reason. heat transfer enhancement by microfins becomes even more important than for macroscale fins. The need for better understanding of heat transfer enhancement by microfins motivates the current study, which resolves three basic issues. First, it is found that the heat flow choking can occur even in the case of simple plate fins or pin fins in the microscale regime, although choking is usually caused by the accommodation of a cluster of fins at the fin tip. Second, this paper shows that the use of micro-plate-fin arrays yields a higher heat transfer enhancement ratio than the use of the micro-pin-fin arrays due to the stronger reduction of thermal conductivity in micro-pin-fins. The third issue is how the size effect influences the fin thickness optimization. For convenience in design applications, an equation for the optimum fin thickness is established which generalizes the case without the size effect as first reported hy Tuckerman and Pease.
    Appears in Collections:[機械工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明