English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23091404      Online Users : 749
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26979

    Title: The application of turbulent kinetic theory to a reacting flow of turbulent plane jet
    Authors: Chuang,SH;Hong,ZC;Wang,JH
    Contributors: 機械工程研究所
    Date: 1998
    Issue Date: 2010-06-29 18:04:42 (UTC+8)
    Publisher: 中央大學
    Abstract: A turbulent kinetic theory due to Chung and a Green's function method by Hong were employed to solve a reacting turbulent plane jet problem. An instantaneous mixing concept was used to simulate the steady state of turbulent plane jet with combustion. The probability density function description of the fluid elements in a turbulent reacting flow could properly explain the turbulent flame zone structure and the turbulent transport of heat, momentum and chemical species even under the infinitely fast reaction rate assumption. The calculated distributions of the various moments of the turbulent combustion field were found in good agreement with the available experimental data. The dynamic behaviour of combustion in the turbulent field could be better understood via the probability density function description of the present turbulent kinetic theory approach.
    Appears in Collections:[機械工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明