中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26983
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39154111      Online Users : 582
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26983


    Title: A nearly isotropic turbulence generated by a pair of vibrating grids
    Authors: Shy,SS;Tang,CY;Fann,SY
    Contributors: 機械工程學系
    Keywords: INTERFACE;FLOWS
    Date: 1997
    Issue Date: 2010-06-29 18:04:48 (UTC+8)
    Publisher: 中央大學
    Abstract: A pair of vertically oscillating grids were applied to experimentally produce a region of nearly isotropic stationary turbulence in homogeneous fluids contained in a water tank. With the appropriate choice of grid mesh size (M), oscillating frequency (f) and stroke (S), and the distance between the grids (H), two distinct flow regions are generated: a highly turbulent region near each grid in the form of turbulent wakes and an approximately isotropic stationary turbulence located in the core region between the grids, as verified by extensive laser-Doppler velocimetry. The former is similar to that generated by a single vibrating grid, which was commonly used in mixed layer experiments. The latter flow region has essentially zero mean velocities, nearly equal magnitude of root-mean-square turbulent intensities in all three directions, and nearly -5/3 energy decay slopes, indicating that the turbulence has some properties of isotropic turbulence. This region of interest is chosen to be a domain where the variations among values of horizontal and vertical root-mean-square velocities are less than 15% and its height is found to be linearly proportional to H. In this region, the effective (overall) turbulent intensity may be represented by an empirical relation of the form q = CfS(1.5)M(0.5)H(-n), where the experimental constant C approximate to 0.89 and the power constant n = 1.5 at least for 4 less than or equal to H/M less than or equal to 6. The present results confirm the expectation of Viller-maux et al. [13] that the energy released in the system per unit time by each grid is additive. Other parameters of interest, such as the autocorrelation, the flow integral length scale, and the experimental uncertainties also are reported. Finally, the current flow apparatus can be conveniently adopted for many experimental studies such as particle or scalar dispersion in isotropic turbulence and simulation of premixed turbulent combustion [12]. (C) Elsevier Science Inc., 1997.
    Relation: EXPERIMENTAL THERMAL AND FLUID SCIENCE
    Appears in Collections:[Graduate Institute of Mechanical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML444View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明