中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26984
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142994      Online Users : 1282
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26984


    Title: A predictive model for condensation in small hydraulic diameter tubes having axial micro-fins
    Authors: Yang,CY;Webb,RL
    Contributors: 機械工程學系
    Keywords: EXTRUDED ALUMINUM TUBES;R-12
    Date: 1997
    Issue Date: 2010-06-29 18:04:50 (UTC+8)
    Publisher: 中央大學
    Abstract: A semiempirical model is proposed to predict the condensation coefficient inside small hydraulic diameter extruded aluminum tubes having microgrooves. The model accounts for the effects of vapor shear and surface tension forces. Surface tension force is effective in enhancing the condensation coefficient as long as the fin tips are not flooded by condensate. This enhancement increases as mass velocity is reduced. At high mass velocity the flow is vapor shear controlled and the surface tension contribution is very small. The surface tension effect is strongly affected by the fin geometry. A smaller fin tip radius provides a higher surface tension drainage force. A large cross sectional area in the interfin region will allow the surface tension enhancement to occur at lower vapor quality. Separate models are developed for the surface tension and vapor shear controlled regimes and the models are combined in the form of an asymptotic equation, The vapor shear model is based on use of an equivalent mass velocity and the heat-momentum transfer analogy. The surface tension model is analytically based. The model is validated by predicting the authors data for two tube geometries using R-12 and R-134a, and the model predicts 95 percent of the condensation data within +/-16 percent.
    Relation: JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
    Appears in Collections:[Graduate Institute of Mechanical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML366View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明