This paper studies the effect of electron beam (EB) surface hardening on the fatigue crack growth rate in AISI 4340 steel. The heat treatment conditions were varied to consider the influence of microstructure and residual stress. The results show that increasing the EB heat input increases the compressive residual stress in the hardened layer. Thus EB surface-hardening treatment improves the fatigue crack growth resistance. This effect increases with increasing EB heat input but disappears as the Delta K value increases. The fracture mechanism of the hardened layer is intergranular fracture, while that of the base material is transgranular quasi-cleavage.