English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22353688      Online Users : 317
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27131


    Title: ZERO-TEMPERATURE ENTROPY OF FULLY FRUSTRATED GENERALIZED SIERPINSKI GASKETS
    Authors: CHANG,CY;HUI,PM;YU,KW
    Contributors: 機械工程學系
    Keywords: PHASE-TRANSITIONS;EUCLIDEAN LATTICE;FRACTAL LATTICE;CROSSOVER
    Date: 1993
    Issue Date: 2010-06-29 18:08:32 (UTC+8)
    Publisher: 中央大學
    Abstract: The Ising model with antiferromagnetic couplings on a family of generalized Sierpinski gaskets is studied using an exact technique developed recently by Stinchcombe [Phys. Rev. B 41 (1990) 2510]. A general expression of the zero-temperature entropy per spin, S(b)AFM (0), is given for general b, where b is a rescaling factor characterizing the fractals. Exact expressions for S(b)AFM (0) are derived for the cases b = 2, 3, 4, 5, 6. These expressions are evaluated numerically and results are compared to those obtained previously by numerical iterations of renormalization-group equations. The asymptotic behavior of S(b)AFM (0) in the limit of large b is discussed.
    Relation: PHYSICS LETTERS A
    Appears in Collections:[機械工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML430View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明