中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27288
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 37503887      Online Users : 2272
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27288


    Title: Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition
    Authors: Chuang,SH;Ouyang,CF;Wang,YB
    Contributors: 環境工程研究所
    Keywords: BIOCHEMICAL-MODEL;REMOVAL PROCESSES;WASTE-WATER;PHOSPHATE;NITRATE
    Date: 1996
    Issue Date: 2010-06-29 18:22:05 (UTC+8)
    Publisher: 中央大學
    Abstract: The kinetic behaviors of simultaneous phosphorus release and denitrification on sludge were investigated under anoxic condition. A phosphorus enriched sludge produced from Anaerobic-Anoxic-Oxic (AnAO) process under various SRT (5, 10 and 15 days) operation conditions was carried out in a series of batch tests. Experimental results indicated that the available organic substrate determined the kinetic behaviors of phosphorus release/uptake and denitrification. The simultaneous phosphorus release and denitrification demonstrated a kinetic competition under anoxic conditions in the presence of an available organic substrate. When the substrate was abundant, sludge was under ''releasable-phosphorus-limited'' condition; phosphorus release rate decreased slightly by nitrate inhibition. However, nitrate significantly inhibited phosphorus release when sludge was under ''initial-substrate-limited'' condition. Moreover, the sludge's phosphorus contents (as created by different SRT processes) dominated the kinetics of competition between phosphorus release and denitrification. The sludge with a high phosphorus content had a higher phosphorus release rate in accordance with a lower denitrification rate. Additionally, the substrate sequestrated rate markedly increased under the condition of simultaneous phosphorus release and denitrification. Finally, a preliminary metabolism model of denitrifying phosphorus removal bacteria was proposed, and found to be capable of adequately accounting for simultaneous phosphorus release and denitrification under anoxic conditions. Copyright (C) 1996 Elsevier Science Ltd
    Relation: WATER RESEARCH
    Appears in Collections:[Graduate Institute of Environmental Engineering ] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML598View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明