English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41628712      線上人數 : 3266
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27338


    題名: Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter
    作者: Yang,SC;Kalnay,E;Hunt,B;Bowler,NE
    貢獻者: 大氣物理研究所
    關鍵詞: ATMOSPHERIC DATA ASSIMILATION;QUASI-GEOSTROPHIC MODEL;IMPLEMENTATION;SYSTEM
    日期: 2009
    上傳時間: 2010-06-29 18:36:29 (UTC+8)
    出版者: 中央大學
    摘要: We have investigated a method to substantially reduce the analysis computations within the Local Ensemble Transform Kalman Filter (LETKF) framework. Instead of computing the LETKF analysis at every model grid point. we compute the analysis on a coarser grid and interpolate onto a high-resolution grid by interpolating the analysis weights of the ensemble forecast members derived from the LETKF. Because the weights vary on larger scales than the analysis increments. there is little degradation in the quality of the weight-interpolated analyses compared to the analyses derived with the high-resolution grid. The weight-interpolated analyses are more accurate than the ones derived by interpolating the analysis increments. Additional benefit from the weight-interpolation method includes improving the analysis accuracy in the data-void regions, where the standard LEKTF with the high-resolution grid gives no analysis corrections due to a lack of available observations. Copyright (C) Royal Meteorological Society and Crown Copyright, 2008
    關聯: QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
    顯示於類別:[大氣物理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML530檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明