English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22338840      Online Users : 275
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27370


    Title: A theoretical and simulation study of the contact discontinuities based on a Vlasov simulation code
    Authors: Tsai,TC;Lyu,LH;Chao,JK;Chen,MQ;Tsai,WH
    Contributors: 太空科學研究所
    Keywords: ROTATIONAL DISCONTINUITIES;SOLAR-WIND;PLASMAS;SHOCKS;EQUATION;HYBRID;SPACE
    Date: 2009
    Issue Date: 2010-06-29 18:37:08 (UTC+8)
    Publisher: 中央大學
    Abstract: Contact discontinuity (CD) is the simplest solution that can be obtained from the magnetohydrodynamics (MHD) Rankine-Hugoniot jump conditions. Due to the limitations of the previous kinetic simulation models, the stability of the CD has become a controversial issue in the past 10 years. The stability of the CD is reexamined analytically and numerically. Our theoretical analysis shows that the electron temperature profile and the ion temperature profile must be out of phase across the CD if the CD structure is to be stable in the electron time scale and with zero electron heat flux on either side of the CD. Both a newly developed fourth-order implicit electrostatic Vlasov simulation code and an electromagnetic finite-size particle code are used to examine the stability and the electrostatic nature of the CD structure. Our theoretical prediction is verified by both simulations. Our results of Vlasov simulation also indicate that a simulation with initial electron temperature profile and ion temperature profile varying in phase across the CD will undergo very transient changes in the electron time scale but will relax into a quasi-steady CD structure within a few ion plasma oscillation periods if a real ion-electron mass ratio is used in the simulation and if the boundary conditions allow nonzero heat flux to be presented at the boundaries of the simulation box. The simulation results of this study indicate that the Vlasov simulation is a powerful tool to study nonlinear phenomena with nonperiodic boundary conditions and with nonzero heat flux at the boundaries of the simulation box.
    Relation: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    Appears in Collections:[太空科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML341View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明