中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27384
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142487      Online Users : 1100
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27384


    Title: Causal link of the wave-4 structures in plasma density and vertical plasma drift in the low-latitude ionosphere
    Authors: Fang,TW;Kil,H;Millward,G;Richmond,AD;Liu,JY;Oh,SJ
    Contributors: 太空科學研究所
    Keywords: EQUATORIAL F-REGION;MODEL;THERMOSPHERE;ELECTRODYNAMICS
    Date: 2009
    Issue Date: 2010-06-29 18:37:22 (UTC+8)
    Publisher: 中央大學
    Abstract: We investigate the annual and local time variations of the wave-4 structures in the plasma density and vertical drift in the low-latitude F region by analyzing the measurements from the first Republic of China satellite (ROCSAT-1) and conducting simulations with the Global Ionosphere and Plasmasphere (GIP) model. The GIP model uses apex magnetic coordinates with International Geomagnetic Reference Field (IGRF) for magnetic field, neutral wind from HWM-07, and thermospheric parameters from the NRLMSISE-00 model. In order to understand how the vertical drifts relate to the longitudinal structure of the topside ionosphere, we apply the equatorial vertical drifts observed from ROCSAT-1 to drive the GIP model. The model well reproduces the longitudinal structure in electron density, and the magnitudes of electron density are comparable with ROCSAT-1 measurement at 600 km. The ROCSAT-1 observations of the vertical drift and plasma density show maximum amplitudes of their wave-4 components in July-September and minimum amplitudes in December-February. An eastward shift of the wave-4 components with increasing local time is observed in both the density and the vertical drift. The GIP model density showed similar annual and local time variations of the wave-4 component. Since the model uses the observed equatorial vertical E x B drift as an input, the results indicate the vertical drifts are essential in the formation and evolution of the longitudinal wave-4 density structure. The amplitude of the eastward propagating diurnal tide (DE3) at 110 km shows similar annual and local time variations as the F region parameters, supporting the link between the DE3 tide, vertical E x B drift, and F region plasma density on a global scale.
    Relation: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    Appears in Collections:[Graduate Institute of Space Science] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML437View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明