English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23028428      Online Users : 537
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27455


    Title: Magnetopause location under extreme solar wind conditions
    Authors: Shue,JH;Song,P;Russell,CT;Steinberg,JT;Chao,JK;Zastenker,G;Vaisberg,OL;Kokubun,S;Singer,HJ;Detman,TR;Kawano,H
    Contributors: 太空科學研究所
    Keywords: INTERPLANETARY MAGNETIC-FIELD;NEAR-EARTH MAGNETOTAIL;SHAPE;SIZE;PRESSURE;MODEL
    Date: 1998
    Issue Date: 2010-06-29 18:38:58 (UTC+8)
    Publisher: 中央大學
    Abstract: During the solar wind dynamic pressure enhancement, around 0200 UT on January 11, 1997, at the end of the January 6-11 magnetic cloud event, the magnetopause was pushed inside geosynchronous orbit. The LANL 1994-084 and GMS 4 geosynchronous satellites crossed the magnetopause and moved into the magnetosheath. Also, the Geotail satellite was in the magnetosheath while the Interball 1 satellite observed magnetopause crossings. This event provides an excellent opportunity to test and validate the prediction capabilities and accuracy of existing models. of the magnetopause location for producing space weather forecasts. In this paper, we compare predictions of two models: the Petrinec and Russell [1996] model and the Shue et al. [1997] model. These two models correctly predict the magnetopause crossings on. the dayside; however, there are some differences in the predictions along the flank. The Shue et al. [1997] model correctly predicts the Geotail magnetopause crossings and partially predicts the Interball 1 crossings. The Petrinec and Russell [1996] model correctly predicts the Interball 1 crossings and is partially consistent with the Geotail observations. We further found that some of the inaccuracy in Shue et al.'s predictions is due to the in appropriate linear extrapolation from the parameter range for average solar wind conditions to that for extreme conditions. To improve predictions under extreme solar wind conditions, we introduce a nonlinear dependence of the parameters oil the solar wind conditions to represent the saturation effects of the solar wind dynamic pressure on the flaring of the magnetopause and saturation effects of the interplanetary magnetic field B-z on the subsolar standoff distance. These changes lead to a better agreement with the Interball 1 observations for this event.
    Relation: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    Appears in Collections:[太空科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML357View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明