English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41629001      線上人數 : 3346
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27480


    題名: Trapezoidal rule for multiple integrals over hyperquadrilaterals
    作者: Yeh,T
    貢獻者: 太空科學研究所
    日期: 1997
    上傳時間: 2010-06-29 18:39:29 (UTC+8)
    出版者: 中央大學
    摘要: Trapeioidal rule for a multiple integral over a hyperquadrilateral is devised. The N-dimensional hyperquadrilateral is partitioned into 2(N)N! hypertriangles, in each of which the integrand is interpolated by a linear function of the N coordinate variables. The resulting N-dimensional trapezoidal rule is a useful quadrature formula for approximating a multiple integral by a weighted sum of the values of the integrand at the nodes of a hyperquadrilateral lattice. For multiple integrals, likely the trapezoidal rule gives better approximation than higher-degree rules when the dimensionality is high. The latter interpolatory rules have the shortcoming that some of the basis polynomials may be not everywhere nonnegative, incurring the possibility of rendering the associated nodal weights negative. As an application, the trapezoidal rule is applied to a surface integral to obtain finite-sum expressions for partial derivatives of a function of three variables in non-orthogonal coordinates. The obtained finite-sum approximation has better accuracy than corresponding finite-difference approximation by accounting for the coupling effect of multiple dimensionality. (C) Elsevier Science Inc., 1997.
    關聯: APPLIED MATHEMATICS AND COMPUTATION
    顯示於類別:[太空科學研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML360檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明