中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27545
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78852/78852 (100%)
造访人次 : 37801053      在线人数 : 1227
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27545


    题名: MAGNETOSPHERIC RESPONSE TO SOLAR-WIND DYNAMIC PRESSURE VARIATIONS - INTERACTION OF INTERPLANETARY TANGENTIAL DISCONTINUITIES WITH THE BOW SHOCK
    作者: WU,BH;MANDT,ME;LEE,LC;CHAO,JK
    贡献者: 太空科學研究所
    关键词: GENERATION;VORTICES;UPSTREAM;FIELD;FLUX
    日期: 1993
    上传时间: 2010-06-29 18:40:40 (UTC+8)
    出版者: 中央大學
    摘要: Some magnetic impulse events observed in the polar region are related to vortices associated with plasma convection in the ionosphere. Recent analyses of satellite and ground data suggest that the interaction of solar wind dynamic pressure pulses and the magnetosphere may lead to the formation of velocity vortices in the magnetopause boundary layer region. This can in turn lead to the presence of vortices in the polar ionosphere. However, before reaching the Earth's magnetopause, the interplanetary pressure pulses must interact with and pass through the bow shock. A variation of the solar wind dynamic pressure (DELTArhoV2) may be associated with shocks, magnetic holes, or tangential discontinuities (TDs) in the interplanetary medium. We study the interaction of interplanetary TDs with the Earth's bow shock (BS) using both theoretical analysis and MHD computer simulations. It is found that as a result of the collision between a TD and the BS, the jump in the solar wind dynamic pressure associated with the TD is significantly modified, the bow shock moves, and a new fast shock or fast rarefaction wave, which propagates in the downstream direction, is excited. Our theoretical analysis shows that the change in the p density across the interplanetary TD plays the most important role in the collision process. Iu the case with an enhanced dynamic pressure behind the interplanetary TD, the bow shock is intensified in strength and moves in the earthward direction. The dynamic pressure jump associated with the transmitted TD is generally reduced from the value before the interaction. A fast compressional shock is excited ahead of the transmitted TD and propagates toward the Earth's magnetosphere. For the case in which the dynamic pressure is reduced behind the interplanetary TD, the pressure jump across the transmitted TD is substantially weakened, the bow shock moves in the sunward direction, and a rarefaction wave which propagates downstream is excited. We also simulate and discuss the interaction of a pair of tangential discontinuities, which may correspond to a magnetic hole, with the BS.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    显示于类别:[太空科學研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML820检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明