中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27585
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41654497      線上人數 : 2275
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27585


    題名: Mechanism of the 1975 Kalapana, Hawaii, earthquake inferred from tsunami data
    作者: Ma,KF;Kanamori,H;Satake,K
    貢獻者: 地球物理研究所
    關鍵詞: SOUTH-FLANK;KILAUEA VOLCANO;NOVEMBER 29;INVERSION;ISLAND;TECTONICS;WAVEFORMS;ORIGIN;MODEL;SLIP
    日期: 1999
    上傳時間: 2010-06-29 18:41:23 (UTC+8)
    出版者: 中央大學
    摘要: We investigated the source mechanism of the 1975 Kalapana, Hawaii, earthquake (M-S = 7.2) by modeling the tsunamis observed at three tide-gauge stations, Hilo, Kahului, and Honolulu. We computed synthetic tsunamis for various fault models. The arrival times and the amplitudes of the synthetic tsunamis computed for Ando's fault model (fault length = 40 km, fault width = 20 km, strike = N70 degrees E, dip = 20 degrees SE, rake = -90 degrees, fault depth = 10 km, and slip = 5.6 m) are similar to 10 min earlier and 5 times smaller than those of the observed, respectively. We tested fault models with different dip angles and depths. Models with a northwest dip direction yield larger tsunami amplitudes than those with a southeast dip direction. Models with shallower fault depths produce later first arrivals than deeper models. We also considered the effects of the Hilina fault system, but its contribution to tsunami excitation is insignificant. This suggests that another mechanism is required to explain the tsunamis. One plausible model is a propagating slump model with a 1 m subsidence along the coast and a 1 m uplift offshore. This model can explain the arrival times and the amplitudes of the observed tsunamis satisfactorily. An alternative model is a wider fault model that dips 10 degrees NW, with its fault plane extending 25 km offshore, well beyond the aftershock area of the Kalapana earthquake. These two models produce a similar uplift pattern offshore and, kinematically, are indistinguishable as far as tsunami excitation is concerned. The total volume of displaced water is estimated to be similar to 2.5 km(3). From the comparison of slump model and the single-force model suggested earlier from seismological data we prefer a combination of faulting and large-scale slumping on the south flank of Kilauea volcano as the most appropriate model for the 1975 Kalapana earthquake. Two basic mechanisms have been presented for explaining the deformation of the south flank of Kilauea: (1) pressure and density variation along the rift zone caused by magma injection and (2) gravitational instability due to the steep topography of the south flank of Kilauea. In either mechanism, large displacements on the south flank are involved that are responsible for the observed large tsunamis.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
    顯示於類別:[地球物理研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML452檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明