2-D and 3-D physical modelling of lithospheric convergence in the Luzon-Taiwan-Ryukyu region is performed with properly scaled laboratory models. The lithospheric model consists of two parts, continental (the Asian Plate, AP) and oceanic (the Philippine Sea Plate, PSP). The oceanic lithosphere has one layer, while the continental lithosphere includes both mantle and crustal layers. The continental margin is covered by sediments. A low-viscosity asthenosphere underlies the lithosphere. The opposing Luzon and Ryukyu subduction zones are initiated by inclined cuts made within the PSP. The subduction/collision is driven by a piston, Pre-collisional intraoceanic subduction along the Luzon and Ryukyu boundaries results in the formation of a transform zone between them, with two tear faults at the ends. The PSP undergoes strong compression along this zone. Subduction of the Chinese margin under the Luzon boundary further increases the compression. Compressive stresses reach the yield limit of the PSP in the arc area, which is a weak zone in the experiments. The plate fails at the western side of the arc along an eastward dipping fault, the Longitudinal Valley Fault. Underthrusting of the frontal wedge of the PSP along this fault results in the closure of the fore arc basin and is then blocked. The PSP fails at the opposite side of the Luzon arc along the westward dipping fault. The failure releases lithospheric compression in this region and results in the initiation of southward-propagating subduction of the PSP under northeastern Taiwan. The incipient subduction zone becomes part of the southeastward-retreating Ryukyu subduction zone, which allows the Okinawa back arc rift to propagate into Taiwan. The Taiwan collision thus includes the following succession of major processes over time, or from south to north: (1) an E-W shortening of the PSP in the Luzon arc; (2) a failure of this plate at the western side of the arc and the formation of the eastward-dipping Longitudinal Valley Fault (the transient plate boundary); (3) a closure of the fore arc basin and a rapid uplift of the orogen; (4) a failure of the PSP at the eastern side of the Luzon arc partly overthrusting the orogen, and the initiation of westward CNN-ward) subduction of the PSP; (5) and finally 'back arc' rifting in the rear of this incipient subduction zone (i.e. in northern Taiwan). All these processes commence with some delay with respect to the preceding ones and propagate southwards.