English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 34482880      線上人數 : 883
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27617


    題名: HORIZONTAL LITHOSPHERE COMPRESSION AND SUBDUCTION - CONSTRAINTS PROVIDED BY PHYSICAL MODELING
    作者: SHEMENDA,AI
    貢獻者: 地球物理研究所
    關鍵詞: INTRAPLATE DEFORMATION;OCEANIC LITHOSPHERE;INDIAN-OCEAN;PLATE;TECTONICS;SEISMICITY;JUNCTION;TRENCH;BASIN;AREA
    日期: 1992
    上傳時間: 2010-06-29 18:42:02 (UTC+8)
    出版者: 中央大學
    摘要: Physical modeling of the subduction is performed with a two-layered mantle model (elastico-plastic lithosphere and low-viscosity asthenosphere) and is governed by the criteria of similarity. Compression of the lithosphere in the area of a passive continental margin has been shown to produce a buckling instability in the oceanic plate with wavelengths of 200 km on the average. Later, a localization of deformation occurs in sagging at some distance from the margin where a strongly dislocated linear ridge is formed due to the thrusting. The plate then experiences a failure along the inclined zone, and subduction starts. The inner trench slope which forms therefore has a scraped structure and include a block of crushed and dislocated oceanic crust and sediments in the lower section. If there is an old inclined fault striking across the compression of an oceanic lithosphere, it is on that fault that a subduction zone is initiated. The inner trench slope has then a different structure and forms, due to normal faulting, in the frontal part of the overriding plate. The formation of a subduction zone requires a compression that is smaller than that in the preceding case by a factor of 2 or 3. The subducting plate experiences an elastico-plastic bending and (under specific conditions) thrusting along the zone, dipping from under the overriding plate oceanward and crossing the entire lithosphere. The best agreement between generalized relief in subduction zone in the model and nature is achieved when a shear yield limit tau(s) = 1.3 x 10(8) Pa, modulus of elasticity E about a few times 10(11) Pa, and a thickness H = 60 km, are adopted for the real lithosphere.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
    顯示於類別:[地球物理研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1212檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明