English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625599      線上人數 : 1974
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27646


    題名: An Adaptive Thresholding Multiple Classifiers System for Remote Sensing Image Classification
    作者: Tzeng,YC;Fan,KT;Chen,KS
    貢獻者: 太空及遙測研究中心
    關鍵詞: LEARNING NEURAL-NETWORK;FUSION
    日期: 2009
    上傳時間: 2010-06-29 18:51:21 (UTC+8)
    出版者: 中央大學
    摘要: A multiple classifiers system which adopts an effective weighting policy to combine the output of several classifiers, generally leads to a better performance in image classification. The two most commonly used weighting policies are Bagging and Boosting algorithms. However, their performance is limited by high levels of ambiguity among classes. To overcome this difficulty, an adaptive thresholding criterion was proposed. By applying it to SAR and optical images for terrain cover classification, comparisons between the multiple classifiers systems using the Bagging and/or Boosting algorithms with and without the adaptive thresholding criterion were made. Experimental results showed that the classification substantially improved when the adaptive thresholding criterion was used, especially when the level of ambiguity of targets was high.
    關聯: PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING
    顯示於類別:[太空及遙測研究中心] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML756檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明