English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23038697      Online Users : 399
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27668


    Title: The atmospheric effect correction of the Ocean Color Imager of ROCSAT-1 - Simulations and using SeaWiFS data as the example
    Authors: Liu,GR;Huang,SJ;Kuo,TH;Chen,WJ;Tseng,CY
    Contributors: 太空及遙測研究中心
    Keywords: SCANNER;ALGORITHM;AEROSOL;MODEL
    Date: 1999
    Issue Date: 2010-06-29 18:51:49 (UTC+8)
    Publisher: 中央大學
    Abstract: The total radiance observed by satellite-borne ocean color sensors results from several contributions: the atmospheric molecular and aerosol scattering, the sea surface reflectance and the water leaving radiance. In order to apply these ocean color sensor data to access the ocean parameters, atmospheric correction should be undertaken in advance to extract the water leaving radiance that is relevant to the ocean parameters. The aim of this study is to establish one atmospheric correction process for the Ocean Color Imager (OCI) of ROCSAT-1, and some pre-launch simulation results are demonstrated. The simulation shows that the water leaving radiance estimation seems to be reliable by the ocean color radiance algorithm proposed in this paper, because the estimated total pigment concentration seems to be reasonable. Further investigations done in this study using SeaWiFS data reveal that the water leaving radiance is somewhat overestimated in comparison with ship measurements because of the underestimated aerosol scattering. The reason for this underestimation is probably the inconsistent marine aerosol type and size distribution between the real and input atmospheric parameters. The simulated result also shows the sun glint effect is significant and plays the most important role in the radiance contributions of OCI imagery. Consequently, choosing the most suitable acquiring time of OCI in order to avoid the sun glint effect will be very important in future OCI operation scheduling.
    Relation: TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES
    Appears in Collections:[太空及遙測研究中心] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML499View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明