It is well known that higher dimensional information essentially leads to better accuracy in remotely sensed image classification. This paper is aimed at land cover classification from SPOT-HRV imagery by the integration of multispectral intensity and texture information. In particular, fractal dimensions are extracted using a wavelet transform as image texture. A neural network approach to classification is adopted in this paper. The underlying network is a modified multilayer perceptron trained by a Kalman filtering technique. The main advantages of this network are (1) its non-backpropagation fashion of learning which leads to a fast convergence, (2) a built-in optimization function, and (3) global scale. Saving computer storage space and a fast learning capability are in particular suitable features for remote sensing applications. Correlation analysis was subsequently performed on both the intensity and fractal images. It was found that fractal information significantly improves the discrimination capability of heterogeneous area such as in urban regions, while it slightly degrades accuracy for homogeneous areas, such as open water. The overall classification performance is superior to results obtained using reflectance only. Improvements over heterogeneous areas are demonstrated.