English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40889112      線上人數 : 1073
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27687


    題名: Remote sensing image segmentation using a Kalman filter-trained neural network
    作者: Chen,KS;Tsay,DH;Huang,WP;Tzeng,YC
    貢獻者: 太空及遙測研究中心
    關鍵詞: CLASSIFICATION
    日期: 1996
    上傳時間: 2010-06-29 18:52:15 (UTC+8)
    出版者: 中央大學
    摘要: This article describes the application of a neural network to the segmentation of remote sensing images of multispectral SPOT and fully polarimetric SAR data. The structure of the network is a modified multilayer perceptron and is trained by the Kalman filter theory. The internal activity of the network is a nonlinear function, while the function at output layer is linearized through the use of a polynomial basis function, thus allowing us employ the theory of Kalman filtering as the learning rule. The network is therefore called the dynamic learning (DL) neural network. It is found that, when applied to SPOT and SAR data, the DL neural network gives a good segmentation results, while the learning rate is Very promising compared to the standard backpropagation network and other fast-learning networks. In particular, for polarimetric SAR data, optimum polarizations for discriminating between different terrains are automatically built in through the use of the Kalman filter technique. The suitability and effectiveness of the proposed DL neural network to the segmentation of remote sensing images is demonstrated. (C) 1996 John Wiley & Sons, Inc.
    關聯: INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY
    顯示於類別:[太空及遙測研究中心] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML528檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明