中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27737
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78818/78818 (100%)
Visitors : 34729988      Online Users : 955
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27737


    Title: Molecular dynamics simulations of argon cluster impacts on a nickel film surface
    Authors: Cheng,YY;Lee,CC
    Contributors: 薄膜技術中心
    Keywords: DAMAGE FORMATION;ION IMPACTS;METALS
    Date: 2009
    Issue Date: 2010-06-29 19:16:02 (UTC+8)
    Publisher: 中央大學
    Abstract: In this study we probe the surface phenomena that occur on nickel thin films after argon cluster impacts by performing several simulations using various energies. The simulations are carried out based on a molecular dynamics (MD) approach. The argon cluster consists of 353 atoms with energies ranging from 1 keV to 3.0 keV. The simulation results show that when the incident energy is 1 keV, the surface retains its smoothness after impact although a slight thermal effect appears near the surface beneath the impact area. Increasing the argon cluster energy to 2 keV causes the atoms in the film to shift slightly under impact and a small hillock appears on the film surface after impact. When the cluster energy increases to 3 keV, a hemispherical crater will appear on the film surface after impact. In addition, a shock wave is generated within the film due to the impact, which propagates toward to the substrate in a hemispherical shape. These shock wave related phenomena are difficult to probe experimentally on an atomic level however molecular dynamics simulations are a suitable tool for investigating the shock wave phenomena in thin film. (C) 2009 Elsevier B.V. All rights reserved.
    Relation: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS
    Appears in Collections:[Thin Film Technology Center] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1471View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明