English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78772/78772 (100%)
造訪人次 : 34462988      線上人數 : 784
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27745


    題名: Thermodynamic basis of chiral recognition in a DNA aptamer
    作者: Lin,PH;Tong,SJ;Louis,SR;Chang,Y;Chen,WY
    貢獻者: 系統生物與生物資訊研究所
    關鍵詞: L-RNA APTAMER;ISOTHERMAL TITRATION CALORIMETRY;HEAT-CAPACITY CHANGES;STATIONARY-PHASE;AMINO-ACID;BINDING;ARGININE;PROTEINS;TARGET;PROTONATION
    日期: 2009
    上傳時間: 2010-06-29 19:26:56 (UTC+8)
    出版者: 中央大學
    摘要: Chiral separation is an important issue in pharmaceutical research and industries, because most organic compounds and biological molecules, including many drugs and food additives, are chiral compounds. DNA aptamers are a new group of chiral selectors; however, there still exists deficiencies in the understanding of the molecular basis of their chiral recognition. Herein, a comparative study of the DNA aptamer binding with L-argininamide (L-Arm) and its enantiomer (D-Arm) is investigated by spectroscopic and calorimetric methods. The effect of various experimental conditions such as temperature, pH and salt concentration on the L-Arm and D-Arm binding properties was studied in order to provide information about the chiral recognition mechanism of the DNA aptamer. An isothermal titration calorimetry study reveals that both L-Arm and D-Arm binding with the aptamer are enthalpy driven and entropy cost processes. The protonated amino group of both L-Arm and D-Arm participates in electrostatic interaction and this interaction is stronger for D-Arm than L-Arm binding with the aptamer. From the opposite behavior of the heat capacity change of the two enantiomers, we could suggest that L-Arm and D-Arm bind at different binding sites of the aptamer, resulting in different conformations of the binding complexes. In the binding mechanism, electrostatic interaction provided by the protonated amino group with the aptamer and the conformational change of the nucleic acid upon binding are major processes involved for chiral recognition in the DNA aptamer. This study provides information on chiral separation of D- and L-argininamide by the aptamer, which can be successfully achieved by varying the operation temperature based on the opposite heat capacity dependence of the enantiomers binding with the DNA.
    關聯: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
    顯示於類別:[系統生物與生物資訊研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML786檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明