English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23026012      Online Users : 178
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27760


    Title: Simultaneous overexpression of Oct4 and Nanog abrogates terminal myogenesis
    Authors: Lang,KC;Lin,IH;Teng,HF;Huang,YC;Li,CL;Tang,KT;Chen,SL
    Contributors: 生命科學研究所
    Keywords: EMBRYONIC STEM-CELLS;TRANSCRIPTION FACTOR;SKELETAL-MUSCLE;MAMMALIAN EMBRYO;POU-DOMAIN;ES CELLS;PLURIPOTENCY;EXPRESSION;GENE;SOX2
    Date: 2009
    Issue Date: 2010-06-29 19:28:59 (UTC+8)
    Publisher: 中央大學
    Abstract: Lang KC, Lin IH, Teng HF, Huang YC, Li CL, Tang KT, Chen SL. Simultaneous overexpression of Oct4 and Nanog abrogates terminal myogenesis. Am J Physiol Cell Physiol 297: C43-C54, 2009. First published April 29, 2009; doi:10.1152/ajpcell.00468.2008.-Oct4 and Nanog are two embryonic stem (ES) cell-specific transcription factors that play critical roles in the maintenance of ES cell pluripotency. In this study, we investigated the effects of Oct4 and Nanog expression on the differentiation state of myogenic cells, which is sustained by a strong positive feedback loop. Oct4 and Nanog, either independently or simultaneously, were overexpressed in C2C12 myoblasts, and the expression of myogenic lineage-specific genes and terminal differentiation was observed by RT-PCR. Overexpression of Oct4 in C2C12 cultures repressed, while exogenous Nanog did not significantly alter C2C12 terminal differentiation. The expression of Pax7 was reduced in all Oct4-overexpressing myoblasts, and we identified a major Oct4-binding site in the Pax7 promoter. Simultaneous expression of Oct4 and Nanog in myoblasts inhibited the formation of myotubes, concomitant with a reduction in the endogenous levels of hallmark myogenic markers. Furthermore, overexpression of Oct4 and Nanog induced the expression of their endogenous counterparts along with the expression of Sox2. Using mammalian two-hybrid assays, we confirmed that Oct4 functions as a transcriptional repressor whereas Nanog functions as a transcriptional activator during muscle terminal differentiation. Importantly, in nonobese diabetic (NOD) severe combined immunodeficiency (SCID) mice, the pluripotency of C2C12 cells was conferred by overexpression of Oct4 and Nanog. These results suggest that Oct4 in cooperation with Nanog strongly suppresses the myogenic differentiation program and promotes pluripotency in myoblasts.
    Relation: AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
    Appears in Collections:[生命科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML602View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明