English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23268789      Online Users : 549
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27763

    Title: The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways
    Authors: Wang,CT;Chang,HH;Hsiao,CH;Lee,MJ;Ku,HC;Hu,YJ;Kao,YH
    Contributors: 生命科學系
    Date: 2009
    Issue Date: 2010-06-29 19:29:03 (UTC+8)
    Publisher: 中央大學
    Abstract: Green tea (-)-epigallocatechin-3-gallate (EGCG) is known as to regulate obesity and fat cell activity. However, little information is known about the effects of EGCG on oxidative reactive oxygen species (ROS) of fat cells. Using 3T3-L1 preadipocytes and adipocytes, we found that EGCG increased ROS production in dose- and time-dependent manners. The concentration of EGCG that increased ROS levels by 180-500% was approximately 50 mu M for a range of 8-16 It of treatment. In contrast, EGCG dose- and time-dependently decreased the amount of intracellular glutathione (GSH) levels. EGCG was more effective than (-)-epicatechin, (-)-epicatechin-3-gallate, and (-)-epigallocatechin in changing ROS and GSH levels. This Suggests a catechin-specific effect. To further examine the relation of GSH to ROS as altered by EGCG, we observed that exposure of preadipocytes and adipocytes to N-acetyl-L-cysteine (a GSH precursor) blocked the EGCG-induced increases in ROS levels and decreases in GSH levels. These observations suggest a GSH-dependent effect of EGCG on ROS production. While EGCG was demonstrated to alter levels of ROS and GSH, its signaling was altered by an EGCG receptor (the so-called 67 kDa laminin receptor(67LR)) antiserum, but not by normal rabbit serum. These data suggest that EGCG mediates GSH and ROS levels via the 67LR pathway.
    Appears in Collections:[生命科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明