English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41645076      線上人數 : 1222
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27795


    題名: Balanced resampling for bootstrapping finite state Markov chains
    作者: Fan,TH;Hung,WL
    貢獻者: 統計研究所
    關鍵詞: JACKKNIFE
    日期: 1997
    上傳時間: 2010-06-29 19:33:47 (UTC+8)
    出版者: 中央大學
    摘要: In this paper, we study the Monte Carlo technique of balanced resampling for bootstrapping finite Markov chains. The balanced sampling method is a technique for improving the efficiency of Monte Carlo simulation. The objective here is to apply this idea to facilitate a reduction in the bootstrap replication size necessary to get approximate confidence intervals for the parameters of interest, such as transition probability and stationary distribution. The relative efficiency of bootstrap algorithm under uniform resampling with respect to balanced resampling is discussed. Some numerical results are also studied.
    關聯: COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION
    顯示於類別:[統計研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML445檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明