|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41631889
線上人數 : 3648
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/27802
|
題名: | Simultaneous selection for homogeneous multinomial populations based on entropy function: An empirical Bayes approach |
作者: | Gupta,SS;Leu,LY;Liang,TC |
貢獻者: | 統計研究所 |
日期: | 1996 |
上傳時間: | 2010-06-29 19:33:56 (UTC+8) |
出版者: | 中央大學 |
摘要: | Consider k independent m-cell multinomial populations pi(1),...,pi(k), where pi(i) has the associated cell probability vector (p) under tilde(i) = (p(il),...,p(im)), i = 1,...,k. The entropy theta(i) = theta((p) under tilde p(i)) = -Sigma(j=1)(m)p(ij) log p(ij) is used as a measure of homogeneity of the population pi(i). A Bayes selection rule relative to the Dirichlet prior distribution D-m(alpha(1),...,alpha(m)) is obtained for selecting all homogeneous populations compared with a standard theta(0). When the values of the parameters alpha(1),...,alpha(m) are unknown, an empirical Bayes selection rule is proposed and its corresponding asymptotic optimality is investigated. It is shown that the proposed empirical Bayes selection rule is asymptotically optimal relative to the class of Dirichlet prior distributions, and the associated regret risk converges to zero with a convergence rate of order O(exp(-tau k + ln k)) for some positive constant tau = tau(alpha(1),...,alpha(m)). |
關聯: | JOURNAL OF STATISTICAL PLANNING AND INFERENCE |
顯示於類別: | [統計研究所] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 388 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::