中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27933
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 69561/69561 (100%)
造访人次 : 23051273      在线人数 : 667
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27933


    题名: A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers
    作者: Hsieh,PW;Yang,SY
    贡献者: 數學研究所
    关键词: ADVECTION-DIFFUSION PROBLEMS;RESIDUAL-FREE BUBBLES;ELLIPTIC PROBLEMS;STOKES EQUATIONS;ERROR ANALYSIS;APPROXIMATION;FORMULATION;MULTISCALE
    日期: 2009
    上传时间: 2010-06-29 19:38:20 (UTC+8)
    出版者: 中央大學
    摘要: In this paper we devise a stabilized least-squares finite element method using the residual-free bubbles for solving the governing equations of steady magnetohydrodynamic duct flow. We convert the original system of second-order partial differential equations into a first-order system formulation by introducing two additional variables. Then the least-squares finite element method using CO linear elements enriched with the residual-free bubble functions for all unknowns is applied to obtain approximations to the first-order system. The most advantageous features of this approach are that the resulting linear system is symmetric and positive definite, and it is capable of resolving high gradients near the layer regions without refining the mesh. Thus, this approach is possible to obtain approximations consistent with the physical configuration of the problem even for high values of the Hartmann number. Before incoorperating the bubble functions into the global problem, we apply the Galerkin least-squares method to approximate the bubble functions that are exact solutions of the corresponding local problems on elements. Therefore, we indeed introduce a two-level finite element method consisting of a mesh for discretization and a submesh for approximating the computations of the residual-free bubble functions. Numerical results confirming theoretical findings are presented for several examples including the Shercliff problem. (C) 2009 Elsevier Inc. All rights reserved.
    關聯: JOURNAL OF COMPUTATIONAL PHYSICS
    显示于类别:[數學研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML628检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈  - 隱私權政策聲明