中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27944
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 38657522      Online Users : 570
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27944


    Title: Eddy Energy along the Tropical Storm Track in Association with ENSO
    Authors: Hsu,PC;Tsou,CH;Hsu,HH;Chen,JH
    Contributors: 數學研究所
    Keywords: WESTERN NORTH PACIFIC;SYNOPTIC-SCALE DISTURBANCES;INTRASEASONAL OSCILLATION;INTERANNUAL VARIATION;CYCLONE INTENSITY;ENERGETICS;WAVES;CIRCULATION;ORIGIN;MODEL
    Date: 2009
    Issue Date: 2010-06-29 19:38:35 (UTC+8)
    Publisher: 中央大學
    Abstract: The interaction between the seasonal mean circulation and the transient eddies over the western North Pacific (WNP) during El Nino-Southern Oscillation (ENSO) warm and cold years was investigated by the three-dimensional eddy kinetic energy (EKE) and eddy available potential energy (EAPE) budget equations for total eddy, high-frequency (< 10 days) and low-frequency (20-70 days) components. Composites of the energy results indicate that low-level anomalous cyclonic circulation, westerly jet and ascending motion associated with the eastward extension of warm SST during warm ENSO years are favorable for eddy barotropic energy conversion (CK) and eddy baroclinic energy conversions (CE). The enhancement of CK and CE might provide kinetic energy for the growth of high- and low-frequency transient eddies including tropical storms (TSs) from the Philippine Sea to the date line over the tropical WNP during warm ENSO years. In contrast, high- and low-frequency eddies convert EKE to seasonal mean circulation over the subtropical and mid-latitude WNP during warm years. Enhanced eddy baroclinic energy conversion plays an important role in the maintenance and enhancement of the subsequent development of transient eddies including TSs as they propagate northward. The loss of EAPE to EKE due to the eddy baroclinic energy conversion is mainly supplemented by the generation of EAPE associated with eddy diabatic heating. However, the energy conversion from mean available potential energy (MAPE) to EAPE is also important due to the eddy vertical heat transport which is neglected in the two-dimensional EAPE budget equation. It is suggested that high- and low-frequency eddies including TSs may be self-development and intensify through their enhanced diabatic heating and vertical heat transport.
    Relation: JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN
    Appears in Collections:[Graduate Institute of Mathematics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML859View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明