English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23318017      Online Users : 320
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27946

    Title: Existence of periodic solutions for a system of delay differential equations
    Authors: Hsu,CH;Yang,SY;Yang,TH;Yang,TS
    Contributors: 數學研究所
    Date: 2009
    Issue Date: 2010-06-29 19:38:37 (UTC+8)
    Publisher: 中央大學
    Abstract: In this paper we mainly study the existence of periodic solutions for a system of delay differential equations representing a simple two-neuron network model of Hopfield type with time-delayed connections between the neurons. We first examine the local stability of the trivial solution, propose some sufficient conditions for the uniqueness of equilibria and then apply the Poincare-Bendixson theorem for monotone cyclic feedback delayed systems to establish the existence of periodic solutions. In addition, a sufficient condition that ensures the trivial solution to be globally exponentially stable is also given. Numerical examples are provided to support the theoretical analysis. (C) 2009 Elsevier Ltd. All rights reserved.
    Appears in Collections:[數學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明