English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23040139      Online Users : 353
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27957


    Title: On the CR analogue of Obata's theorem in a pseudohermitian 3-manifold
    Authors: Chang,SC;Chiu,HL
    Contributors: 數學研究所
    Keywords: 1ST EIGENVALUE;SUB-LAPLACIAN;MANIFOLDS;SUBLAPLACIAN;CURVATURE
    Date: 2009
    Issue Date: 2010-06-29 19:38:52 (UTC+8)
    Publisher: 中央大學
    Abstract: In this paper, we first prove the CR analogue of Obata's theorem on a closed pseudohermitian 3-manifold with zero pseudohermitian torsion. Secondly, instead of zero torsion, we have the CR analogue of Li-Yau's eigenvalue estimate on the lower bound estimate of positive first eigenvalue of the sub-Laplacian in a closed pseudohermitian 3-manifold with nonnegative CR Paneitz operator P (0). Finally, we have a criterion for the positivity of first eigenvalue of the sub-Laplacian on a complete noncompact pseudohermitian 3-manifold with nonnegative CR Paneitz operator. The key step is a discovery of integral CR analogue of Bochner formula which involving the CR Paneitz operator.
    Relation: MATHEMATISCHE ANNALEN
    Appears in Collections:[數學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML557View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明