English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43369177      線上人數 : 1307
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27966


    題名: The super spanning connectivity and super spanning laceability of the enhanced hypercubes
    作者: Chang,CH;Lin,CK;Tan,JJM;Huang,HM;Hsu,LH
    貢獻者: 數學研究所
    關鍵詞: GRAPHS;NETWORKS
    日期: 2009
    上傳時間: 2010-06-29 19:39:06 (UTC+8)
    出版者: 中央大學
    摘要: A k -container C(u,v) of a graph G is a set of k disjoint paths between u and v. A k-container C(u,v) of G is a k (*) -container if it contains all vertices of G. A graph G is k (*) -connected if there exists a k (*)-container between any two distinct vertices of G. Therefore, a graph is 1(*)-connected (respectively, 2(*)-connected) if and only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super spanning connected if there exists a k (*)-container between any two distinct vertices of G for every k with 1a parts per thousand currency signka parts per thousand currency sign kappa(G) where kappa(G) is the connectivity of G. A bipartite graph G is k (*) -laceable if there exists a k (*)-container between any two vertices from different partite set of G. A bipartite graph G is super spanning laceable if there exists a k (*)-container between any two vertices from different partite set of G for every k with 1a parts per thousand currency signka parts per thousand currency sign kappa(G). In this paper, we prove that the enhanced hypercube Q (n,m) is super spanning laceable if m is an odd integer and super spanning connected if otherwise.
    關聯: JOURNAL OF SUPERCOMPUTING
    顯示於類別:[數學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML580檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明