|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42120048
線上人數 : 1319
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/27967
|
題名: | Triebel-Lizorkin Spaces of Para-Accretive Type and a Tb Theorem |
作者: | Lin,CC;Wang,K |
貢獻者: | 數學研究所 |
關鍵詞: | SINGULAR INTEGRAL-OPERATORS;LIPSCHITZ-CURVES |
日期: | 2009 |
上傳時間: | 2010-06-29 19:39:07 (UTC+8) |
出版者: | 中央大學 |
摘要: | In this article, we use a discrete Calderon-type reproducing formula and Plancherel-Polya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type (F) over dot(b,p)(alpha,q), which reduces to the classical Triebel-Lizorkin spaces when the para-accretive function is constant. Moreover, we give a necessary and sufficient condition for the (F) over dot(1,p)(0,q) - (F) over dot(b,p)(0,q) boundedness of paraproduct operators. From this, we show that a generalized singular integral operator T with MbTMb is an element of WBP is bounded from (F) over dot(1,p)(0,q) to (F) over dot(b,p)(0,q) if and only if Tb is an element of(F) over dot(b,infinity)(0,q) and T*b = 0 for n/n+epsilon < p <= 1 and n/n+epsilon < q <= 2, where epsilon is the regularity exponent of the kernel of T. |
關聯: | JOURNAL OF GEOMETRIC ANALYSIS |
顯示於類別: | [數學研究所] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 527 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::