English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42120048      線上人數 : 1319
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27967


    題名: Triebel-Lizorkin Spaces of Para-Accretive Type and a Tb Theorem
    作者: Lin,CC;Wang,K
    貢獻者: 數學研究所
    關鍵詞: SINGULAR INTEGRAL-OPERATORS;LIPSCHITZ-CURVES
    日期: 2009
    上傳時間: 2010-06-29 19:39:07 (UTC+8)
    出版者: 中央大學
    摘要: In this article, we use a discrete Calderon-type reproducing formula and Plancherel-Polya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type (F) over dot(b,p)(alpha,q), which reduces to the classical Triebel-Lizorkin spaces when the para-accretive function is constant. Moreover, we give a necessary and sufficient condition for the (F) over dot(1,p)(0,q) - (F) over dot(b,p)(0,q) boundedness of paraproduct operators. From this, we show that a generalized singular integral operator T with MbTMb is an element of WBP is bounded from (F) over dot(1,p)(0,q) to (F) over dot(b,p)(0,q) if and only if Tb is an element of(F) over dot(b,infinity)(0,q) and T*b = 0 for n/n+epsilon < p <= 1 and n/n+epsilon < q <= 2, where epsilon is the regularity exponent of the kernel of T.
    關聯: JOURNAL OF GEOMETRIC ANALYSIS
    顯示於類別:[數學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML527檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明