中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27970
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41667597      線上人數 : 1712
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27970


    題名: Character sums and the series L(1,chi) with applications to real quadratic fields
    作者: Leu,MG
    貢獻者: 數學研究所
    日期: 1999
    上傳時間: 2010-06-29 19:39:11 (UTC+8)
    出版者: 中央大學
    摘要: In this article, let k = 0 or 1 (mod4) be a fundamental discriminant, and let chi(n) be the real even primitive character module k. The series L(1,chi) = Sigma(n=1)(infinity) chi(n)/n can be divided into groups of k consecutive terms. Let v be any nonnegative integer, j an integer, 0 less than or equal to j less than or equal to k - 1, and let T(v, j, chi) = Sigma(n=j+1)(j+k) chi(vk + n)/vk + n Then L(1,chi) = Sigma(v=0)(infinity) T(V, 0, chi) = Sigma(n=1)(j) chi(n)/n + Sigma(v=0)(infinity) T(v, j, chi). In section 2, Theorems 2.1 and 2.2 reveal a surprising relation between incomplete character sums and partial sums of Dirichlet series. For example, we will prove that T(v, j, chi).M < 0 for integer v greater than or equal to max{1, root k//M/} if M = Sigma(m=1)(j-1) chi(m)+ 1/2 chi(j) not equal 0 and /M/ greater than or equal to 3/2. In section 3, we will derive algorithm and formula for calculating the class number of a real quadratic field. In section 4, we will attempt to make a connection between two conjectures on real quadratic fields and the sign of T(0, 20, chi).
    關聯: JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN
    顯示於類別:[數學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML361檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明