English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634733      線上人數 : 2208
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27980


    題名: Non-optimal rates of ergodic limits and approximate solutions
    作者: Shaw,SY
    貢獻者: 數學研究所
    關鍵詞: LINEAR FUNCTIONAL-EQUATIONS;INTEGRATED SEMIGROUPS;LAPLACE TRANSFORMS;CONVERGENCE
    日期: 1998
    上傳時間: 2010-06-29 19:39:24 (UTC+8)
    出版者: 中央大學
    摘要: This paper is concerned with non-optimal rates of convergence for two processes {A(alpha)} and {B-alpha}, which satisfy \\A(alpha)\\ = O(1), B(alpha)A subset of AB(alpha) = I - A(alpha),\\AA(alpha)\\ = O(e(alpha)), where A is a closed operator and e(alpha) --> 0. Under suitable conditions, we describe, where A is a closed operator and e(alpha) --> 0. Under suitable conditions, we describe, in terms of K-functionals, those x (resp. y) for which the non-optimal convergence rare of {A(alpha)x} (resp. {B(alpha)y}) is of the order O(f(alpha)), where f is a function satisfying e(alpha) less than or equal to f(alpha) --> 0. In case that f(alpha)/e(alpha) --> infinity, the sharpness of the non-optimal rate of {A(alpha)x} is equivalent to that A has non-closed range. The result provides a unified approach to dealing with non-optimal rates for many particular mean ergodic theorems and for various methods of solving the equation Ax = y. We discuss in particular applications to alpha-times integrated semigroups, n-times integrated cosine Functions, and tensor product semigroups. (C) 1998 Academic Press.
    關聯: JOURNAL OF APPROXIMATION THEORY
    顯示於類別:[數學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML348檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明