English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23062651      Online Users : 332
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/28059


    Title: ON UNIFORM ERGODIC-THEOREMS IN GROTHENDIECK SPACES WITH THE DUNFORD-PETTIS PROPERTY
    Authors: SHAW,SY
    Contributors: 數學研究所
    Date: 1994
    Issue Date: 2010-06-29 19:41:04 (UTC+8)
    Publisher: 中央大學
    Abstract: Let A be a densely defined closed operator, and {A(n)}, {B(n)} be two sequences of bounded operators on a Grothendieck space X with the Dunford-Pettis property such that {A(n) - I} is uniformly power bounded, B(n)A subset-of AB(n) = I - A(n), A(n)A subset-of AA(n), \\AA(n)X\\ --> 0 for x is-an-element-of X and \\A(n)*A*x*\\ --> 0 for x* is-an-element-of D(A*). If {A(n)} converges strongly on X, then both {A(n)} and {B(n)\R(A)} converge uniformly. Implications of this result in the cases of discrete semigroups, n-times integrated semigroups and cosine operator functions are then described.
    Relation: HOUSTON JOURNAL OF MATHEMATICS
    Appears in Collections:[數學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML321View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明